On Quasi-orthogonal Polynomials

A. Draux
INSA de Rouen, Département de Genie Mathematique. Place Emile Blondel - BP 08, 76131 Mont-Saint-Aignan Cedex, France
Communicated hy Paul Netai

Received April 26, 1986; revised October 22. 1986

Abstract

Chihara [On quasi orthogonal polynomials, Proc. Amer. Math. Soc. 8 (1957), 765-767] has shown that quasi-orthogonal polynomials satisfy a three-term recurrence relation with polynomial coefficients. In this paper it is shown that, if a sequence of polynomial coefficients is given with some particular properties. then there exists a unique sequence of monic polynomials $\left\{\left\{U_{n}\right\}_{n \in}\right.$ and $\left.U_{0}=1\right\}$ which satisfies a three-term recurrence relation whose polynomial coefficients are those given. The polynomials are quasi-orthogonal of order 1 with respect to a unique linear functional of moments. Some new properties of the quasi-orthogonal polynomials of order 1 are also proved. 1990 Academic Press. Inc.

1. Quasi-orthogonal Polynomials

The quasi-orthogonal polynomials of order 1 introduced by Riesz [8] were generalized for any order by Chihara [2]. In particular Chihara proved that these polynomials satisfy a three-term recurrence relation with polynomial coefficients.

Some new properties have been given by Dickinson [4] and Brezinski [1] for quasi-orthogonal polynomials of order 1.

More recently Maroni [7], using the quasi-orthogonal polynomials of order $q-1$ to obtain a characterisation of the semi-classical polynomials, gives some properties linking the sets of orthogonal polynomials and those of quasi-orthogonal polynomials.

Finally new properties of the quasi-orthogonal polynomials of order $q-1$ are given by Draux [6], when the linear functional is semi-definite, that is when some Hankel determinants can be zero.

Let c be a linear functional acting on the vector space P of polynomials with complex coefficients. The moments of this functional are given by

$$
c\left(x^{i}\right)=c_{i}, \quad \forall i \in \mathbb{N} .
$$

The functional c will be said definite if all the Hankel matrices,

$$
M_{k}=\left(c_{i+i}\right)_{i}^{k},-0, \quad \forall k \in \mathbb{N}, k \geqslant 1
$$

have an inverse.
In all the sequel of this first section, c will be assumed to be definite. In this case there exists a unique sequence of monic orthogonal polynomials with respect to c which satisfy a three-term recurrence relation,

$$
P_{k+1}=\left(x+B_{k+1}\right) P_{k}+C_{k+1} P_{k},
$$

with $C_{k+1} \neq 0$ and the initializations: $P_{1}=0$ and $P_{0}=1$. (See for instance Brezinski [1].)

A second sequence $\left\{Q_{i}\right\}_{i \in N}$ of polynomials satisfies the same recurrence relation with the initializations Q, equal to an arbitrary non zero constant c_{0} and $Q_{0}=0$. In this case, $C_{1}=1$. These polynomials Q_{i} are the second kind orthogonal polynomials or the associated polynomials of P_{i} with respect to the linear functional c.

Throughout this paper, q will denote a positive integer.

Definition 1 [7]. A sequence of polynomials $\left\{U_{n}\right\}_{n \in \mathbb{A}}$, such that the degree of U_{n} is equal to n for any n belonging to \mathbb{N},
(i) is said quasi-orthogonal of order $q-1$ if

$$
\begin{aligned}
& \forall k \in \mathbb{N} \text { such that } k \geqslant q-1, \quad\left(\left(x^{\prime} U_{k}\right)=0, \quad \forall l \in \mathbb{N}\right. \text { such } \\
& \text { that } 0 \leqslant l \leqslant k-q, \quad \text { and } \quad \exists r \in \mathbb{N}, \quad r \geqslant q-1 \quad \text { such that } \\
& c\left(x^{r} \quad q+1 U_{r}\right) \neq 0 .
\end{aligned}
$$

(ii) is said strictly quasi-orthogonal of order $q-1$ if
$\forall k \in \mathbb{N}$ such that $k \geqslant q-1, c\left(x^{i} U_{k}\right)=0, \forall l \in \mathbb{N}$ such that $0 \leqslant l \leqslant k-q$, and $c\left(x^{k} \quad 4+1 U_{k}\right) \neq 0$.

In this paper we are only interested in the monic quasi-orthogonal polynomials of order 1. Each quasi-orthogonal polynomial can be expressed as follows (see Chihara [2]):

$$
\begin{equation*}
U_{k}=P_{k}+a_{k} P_{k}, \quad \forall k \in \mathbb{N} . \tag{1}
\end{equation*}
$$

a_{k} is an arbitrary complex constant.
Obviously, U_{k} is strictly quasi-orthogonal of order 1 if and only if $a_{k} \neq 0$.
Chihara [2] has shown that the quasi-orthogonal polynomials satisfy a three-term recurrence relations. To obtain this relation in the case of quasi-
orthogonal polynomials of order 1 , we compute the first unknown U_{h} of the following linear system, $\forall k \in \mathbb{N}$ such that $k \geqslant 3$,

$$
\left[\begin{array}{ccccc}
0 & a_{k}, 2 & 1 & 0 & 0 \\
0 & 0 & a_{k}, & 1 & 0 \\
-1 & 0 & 0 & a_{k} & 1 \\
0 & C_{k-1} & x+B_{k-1} & -1 & 0 \\
0 & 0 & C_{k} & x+B_{k} & -1
\end{array}\right]\left[\begin{array}{c}
U_{k} \\
P_{k}, 3 \\
P_{k}=2 \\
P_{k}, 1 \\
P_{k}
\end{array}\right]=\left[\begin{array}{c}
U_{k}: \\
U_{k-1} \\
0 \\
0 \\
0
\end{array}\right] .
$$

Then, this relation is
$E_{k}(x) U_{k}(x)=F_{k}(x) U_{k} \quad 1(x)+G_{k}(x) U_{k} \quad 2(x), \quad \forall k \in \mathbb{N}$ such that $k \geqslant 3$,
where $-E_{k}$ is equal to the determinant of the linear system, $-F_{h}$ is the second cofactor and $-G_{k}$ the first cofactor of this determinant.

The three polynomials E_{k}, F_{k}, and G_{k} are

$$
\begin{align*}
& E_{k}(x)=a_{k-2}\left(x+B_{k-1}+a_{k-1}\right)-C_{k} \\
& F_{k}(x)=\left(a_{k-2}\left(x+B_{k-1}\right)-C_{k-1}\right)\left(x+B_{k}+a_{k}\right)+a_{k}{ }_{2} C_{k}, \tag{3}\\
& G_{k}(x)=C_{k-1}\left(a_{k} \quad 1\left(x+B_{k}+a_{k}\right)-C_{k}\right) .
\end{align*}
$$

The first relations are

$$
\begin{array}{cl}
U_{1}=F_{1} U_{0} & \text { with } \operatorname{deg} F_{1}=1 \\
E_{2} U_{2}=F_{2} U_{1}+G_{2} U_{0} & \text { with } E_{2}=1, F_{2}=x+B_{2}+a_{2} \tag{4}\\
& \text { and } G_{2}=-\left(a_{1}\left(x+B_{2}+a_{2}\right)-C_{2}\right) .
\end{array}
$$

The following property is obvious and has been extended to the case of quasi-orthogonal polynomial of order $q-1$ (see Draux [6]).

Property 2. Say
$\forall k \in \mathbb{N}$ such that $k \geqslant 4, G_{k-1}(x)=C_{k}{ }_{2} E_{k}(x)$. For $k=2$ and $3, E_{k}=G_{k-1}$.

Another property will be used in the sequel when $a_{k} a_{1} a_{k} \quad \neq 0$, that is to say when the degrees of E_{k} and G_{k} are equal to 1.

Property 3. If $a_{k}, a_{k} \neq 0$ and if x is a common zero of two of the polynomials E_{k}, F_{k}, and G_{k}, then x is also a zero of the third one.

Proof. $\quad F_{k}$ can be written

$$
\begin{equation*}
F_{k}=\frac{E_{k} G_{k}}{C_{k}, a_{k}}-\frac{a_{k}}{C_{k}} G_{k}+\frac{C_{k}}{a_{k}} E_{k}, \tag{5}
\end{equation*}
$$

and the property is immediately verified.

2. Polynomials Satisfying a Three-Tfrm Reclrrence Relation

In this part, our aim is to find the sequences of polynomials satisfying a three-term recurrence relation of type (2) and to prove that these polynomials are quasi-orthogonal of order 1 with respect to a unique linear functional of moments when the first moment c_{0} is fixed.

A sequence $\left\{G_{i}\right\} \geq 1$ of non identically zero polynomials and a sequence $\left\{C_{i}\right\}_{i \geqslant 1}$ of complex numbers are assumed to be known with the following assumptions:
(i) $G_{1}=1$,
(ii) the degree of G_{k} is equal to 0 or 1 ,
(iii) at least one of G_{k} 's polynomials has a degree equal to 1 .
(iv) $C_{i} \neq 0, \forall i \geqslant 1 ; C_{1}=1$,
(v) If the degree of G_{k+1} is zero, then $G_{k+1}=-C_{k} C_{k}$, I. Let numbers $a_{k}(k \geqslant 0)$ be defined by writing the coefficient of x in $G_{k+1}(x)$ as $a_{k} C_{k}$. (In particular, because of (i), $a_{0}=0$).

From the sequences $\left\{G_{i}\right\}_{i \geqslant 1}$ and $\left\{C_{i}\right\}_{i \geqslant 1}$ two other sequences $\left\{E_{i}\right\}_{i \geqslant 2}$ and $\left\{F_{i}\right\}_{1 \geqslant 1}$ of polynomials are deduced thanks to the following assumptions:
(vi) $E_{k}=G_{k}$, for $k=2: C_{k}{ }_{2} E_{k}=G_{k} \quad, \quad \forall k \in \mathbb{N}$ such that $k \geqslant 3$,
(vii) F_{1} is equal to an arbitrary monic polynomial of degree 1 exactly, and $\forall k \geqslant 2$, if $a_{k-1} \neq 0$ then

$$
\begin{equation*}
F_{k}(x)=\frac{E_{k}(x) G_{k}(x)}{C_{k}, a_{k} \quad}-\frac{a_{k}}{C_{k}} G_{k}(x)+\frac{C_{k}}{a_{k},} E_{k}(x) \tag{6}
\end{equation*}
$$

and if $a_{k} \quad 1=0$ then

$$
\begin{equation*}
F_{k}(x)=E_{k}(x) L_{k}(x)+C_{k} a_{k} \quad 2 \tag{7}
\end{equation*}
$$

where $L_{k}(x)$ is a polynomial of degree 1 exactly.
Remark. Property 3 holds.

With the three sequences $\left\{E_{i}\right\}_{i \geqslant 2},\left\{F_{i}\right\}_{i \geqslant 1}$, and $\left\{G_{i}\right\}_{i \geqslant 1}$ a fourth sequence $\left\{U_{i}\right\}_{i \in \mathbb{N}}$ of polynomials will be generated by

$$
\begin{equation*}
E_{k} U_{k}=F_{k} U_{k-1}+G_{k} U_{k} \quad 2, \quad \forall k \geqslant 2 \tag{8}
\end{equation*}
$$

with the initializations: $U_{0}=1$ and $U_{1}=F_{1} U_{0}$.
From the assumptions v, vi, and vii it is easy to see that $\operatorname{deg} F_{k}=1+\operatorname{deg} E_{k}$ and the leading coefficients of the two polynomials are equal. Then:

Property 4. If the sequence $\left\{U_{i}\right\}_{i \in \mathbb{N}}$ exists, U_{i} is monic and $\operatorname{deg} U_{i}=i$, $\forall i \in \mathbb{N}$.

Thforem 5. The sequence $\left\{U_{i}\right\}_{i \in \mathbb{N}}$ exists.
Proof. The subsequence $\left\{U_{i}\right\}_{i=0}^{k=1}$ is assumed to be already computed.
If $\operatorname{deg} E_{k}=0, U_{k}$ exists.
If $\operatorname{deg} E_{k}=1$ the relation (8) shows that $E_{k-1} U_{k-1}-F_{k-1} U_{k-2}$ is divisible by G_{k-1}, that is to say by E_{k}. Thanks to relation (6) this last quantity is equal to

$$
E_{k-1}, U_{k-1}-\frac{E_{k-1} G_{k} 1}{C_{k-2} a_{k-2}} U_{k}+\frac{a_{k}-3}{C_{k-2}} G_{k}, U_{k-2}-\frac{C_{k-1}}{a_{k-2}} E_{k-1} U_{k-2},
$$

for $a_{k-\ldots z} \neq 0$.
Therefore $E_{k-1}\left(U_{k-1}-\left(C_{k-1} / a_{k} z_{2}\right) U_{k-2}\right)$ is divisible by $G_{k} \quad$.
Let us set $j=k-1$.
(I) (i) If $\operatorname{deg} E_{i}=0, U_{j}-\left(C_{j} / a_{i-1}\right) U_{i}$, is divisible by G_{j}. Then goto (II).
(ii) If $\operatorname{deg} E_{j}=1$ and if E_{j} is not divisible by G_{j}, then $U_{i}-\left(C_{j} / a_{j-1}\right) U_{j, 1}$ is divisible by G_{j}. Then goto (II).
(iii) If $\operatorname{deg} E_{j}=1$ and if E_{j} is divisible by G_{j}, then F_{j} also is divisible by G_{j} (Property 3).
Then the quantity $U_{j}-\left(C_{j} / a_{j-1}\right) U_{j-1}$ is equal to

$$
\begin{equation*}
\frac{G_{j}}{C_{j} a_{j-1}} U_{j-1}-a_{j .1}\left(U_{j-1}-\frac{C_{i-1}}{a_{j} 2} U_{j-2}\right) . \tag{9}
\end{equation*}
$$

by using the relations (6) and (8), and the assumption (vi).
But thanks to relations (8) it also is obvious that

$$
\begin{equation*}
E_{i},\left(U_{i},-\left(C_{j}, 1 / a_{j}, 2\right) U_{i-2}\right) \text { is divisible by } G_{i} \text {, thus by } G_{j} \text {. } \tag{10}
\end{equation*}
$$

Then replace j by $j-1$ and goto (I).
(II) Remark that if $\operatorname{deg} E_{j}=1$ and if E_{j} is divisible by $G_{j}, \forall j \in \mathbb{N}$ $3 \leqslant j \leqslant k-1$, the last iteration will be (I)(i) because $E_{2}=1$.

The result is

$$
U_{i}-\frac{C_{i}}{a_{j}} U_{j} \text {, is divisible by } G_{j}
$$

But thanks to the relations (9) and (10) it is obvious that

$$
\begin{equation*}
U_{k}, 1-\frac{C_{k} 1}{a_{k} 1} U_{k} \quad \text { is divisible by } G_{k} \tag{11}
\end{equation*}
$$

Now to compute $U_{k}, F_{k} U_{k} \quad+G_{k} U_{k} \quad 2$ must be divisible by E_{k}, that is to say by $G_{k} \quad$.

If $a_{k}, \neq 0$ and thanks to relation (6) it is easy to see that

$$
G_{k} \frac{a_{k} 2}{C_{k}}\left(\begin{array}{ll}
U_{k} & 1-\frac{C_{k}}{a_{k}} 2 \\
U_{k} & 2
\end{array}\right) \text { must be divisible by } G_{k-1},
$$

which is also verified (see (11)).
If $a_{k},=0$ and thanks to relation (7) we have the following result:

$$
C_{k} a_{k} 2\left(U_{k-1}-\frac{C_{k} 1}{a_{k} \cdot 2} U_{k} 2\right) \text { must be divisible by } G_{k}
$$

which is also verified (see (11)).
Moreover the following property is given by the proof of the preceding theorem:

Theorem 6. If $\operatorname{deg} E_{k}=1, U_{k},-\left(\begin{array}{lll}C_{k} & 1 / a_{k} & 2\end{array}\right) U_{k} \quad 2$ is divisible by E_{k}.
A new sequence $\left\{P_{j}\right\}_{j \in \mathcal{S}}$ of polynomials will be generated by

$$
\begin{equation*}
E_{i+2} P_{i}=a_{j} U_{i+1}-C_{j+1} U_{j} \tag{12}
\end{equation*}
$$

These new polynomials verify the following:
Theorem 7. $\forall i \in \mathbb{N}$,
(i) $\operatorname{deg} P_{i}=i$,
(ii) P_{i} is monic,
(iii) $U_{i+1}=P_{i+1}+a_{i+1} P_{i}$.

Proof. The properties (i) and (ii) are obvious thanks to relation (12). (iii) If $a_{i+1}=0$, then $U_{i+1}=P_{i+1}$ (given by relation (12)).

If $a_{i+1} \neq 0$, the two members of relation (12) (with $j=i+1$) are multiplied by E_{i+2}, and the quantity $E_{i+2} U_{i+2}$ is replaced by its expression given by relation (8). Finally $a_{i+1} F_{i+2}$ is replaced by its expression given by relation (6). Then the following relation is obtained:

$$
E_{i+2} E_{i+3} P_{i+1}=E_{i+2} E_{i+3} U_{i+1}-a_{i+1} E_{i+3}\left(a_{i} U_{i+1}-C_{i+1} U_{i}\right)
$$

But $a_{i} U_{i+1}-C_{i+1} U_{i}=E_{i+2} P_{\text {; }}$ and after simplification by $E_{i+2} E_{i+3}$, the relation (13) is obtained.

It is obvious that relation (8) has two independent solutions. The first solution sequence is obtained from the initializations: $U_{0}=1$ and $U_{1}=F_{1}$. The second solution sequence will be given from the independent initializations: $V_{0}=0$ and $V_{1}=$ arbitrary non zero constant c_{0}.

A similar proof as that of Theorem 5 shows that the second sequence $\left\{V_{i}\right\}_{i \in \mathbb{N}}$ also exists, and the following theorem obviously holds:

Theorfm 8. $\forall i \in \mathbb{N}$ such that $i \geqslant 1$
(i) $\operatorname{deg} V_{i}=i-1$,
(ii) the leading coefficient of V_{i} is equal to c_{0},
(iii) If $\operatorname{deg} E_{i+2}=1, V_{i+1}-\left(C_{i+1} / a_{i}\right) V_{i}$ is divisible by E_{i+2}.

Another new sequence $\left\{Q_{j}\right\}_{j \in \mathbb{S}}$ of polynomials can be generated by

$$
\begin{equation*}
E_{i+2} Q_{i}=a_{j} V_{j+1}-C_{j+1} V_{j} \tag{14}
\end{equation*}
$$

A result similar to Theorem 7 can be proved:
Theorem 9. $\forall i \in \mathbb{N}$, such that $i \geqslant 1$,
(i) $\operatorname{deg} Q_{i}=i-1$,
(ii) the leading coefficient of Q_{i} is equal to c_{0},
(iii) $V_{i}=Q_{i}+a_{i} Q_{i} \quad$.

From relation (8) which is satisfied by the polynomials U_{i} and V_{i} it is easy to obtain:

$$
E_{i}\left(U_{i} V_{i-1}-U_{i-1} V_{i}\right)=-G_{i}\left(U_{i-1} V_{i}{ }_{2}-U_{i-2} V_{i} \quad 1\right) .
$$

All the relations, $\forall i \in \mathbb{N}$ such that $2 \leqslant i \leqslant k$ are multiplied by each other and after simplification the following result is obtained:

ThEOREM $10 . \quad \forall k \geqslant 2$,

$$
\begin{equation*}
U_{k} V_{k-1}-U_{k-1} V_{k}=(-1)^{k} c_{0} \prod_{j=2}^{k-2} C_{j} G_{k} \tag{16}
\end{equation*}
$$

If $k \leqslant 3$ the product is taken equal to 1 .

Corollary 11. (i) At most one of the pairs $\left(U_{k}, U_{k}, 1\right)$ and ($V_{k}, V_{k} 1_{1}$) can have a common zero which is a zero of G_{k}.
(ii) The pair $\left(U_{k}, V_{k}\right)$ never has a common zero, $\forall k \in \mathbb{N}$.

Proof. (i) Is a direct consequence of the relation (16).
(ii) If, for instance, U_{k} and V_{k} had a common zero, it would be a zero of G_{k}, but the relations (12) and (14) with $j=k-1$ show that it would also be a zero of U_{k}, and V_{k}, , and a contradiction would be obtained with the first property of this corollary.

From the sequences $\left\{U_{i}\right\}_{i \in n}$ and $\left\{V_{i}\right\}_{i, \ldots}$ some monic polynomials \bar{P}_{i} and some polynomials \bar{Q}_{i} whose leading coefficient is c_{0}. will be given by the following processes:

$$
\begin{aligned}
& U_{0}=1 \\
& U_{1}=\left(x+\hat{B}_{1}\right) U_{11} \\
& U_{2}=\left(x+\hat{B}_{2}\right) U_{1}+\hat{C}_{2} U_{0} \\
& U_{k}=\left(x+\hat{B}_{k}\right) U_{k}+\hat{C}_{k} U_{k}+\hat{D}_{k} \bar{P}_{k}, \quad \forall k \geqslant 3
\end{aligned}
$$

with

$$
\begin{align*}
& \quad \operatorname{deg} \bar{P}_{k} \quad 3 \leqslant k-3 \tag{17}\\
& V_{0}=0 \\
& V_{1}=c_{0} \\
& V_{2}=\left(x+B_{2}^{*}\right) V_{1}+C_{2}^{*} V_{1} \\
& V_{k}=\left(x+B_{k}^{*}\right) V_{k} \quad+C_{k}^{*} V_{k}+D_{k}^{*} \bar{Q}_{k \quad 3}, \quad \forall k \geqslant 3
\end{align*}
$$

with

$$
\begin{equation*}
\operatorname{deg} \bar{Q}_{k} \quad{ }_{3} \leqslant k-4 \quad \text { (obviously } \bar{Q}_{0}=0 \text {). } \tag{18}
\end{equation*}
$$

Relation (17) has already been given by Dickinson [4] by using a property of the quasi-orthogonal polynomials of order 1 .

A first result can be proved about the coefficient of the relations (17) and (18).

Theorem 12. $\hat{B}_{k}=B_{k}^{*}, \hat{C}_{k}=C_{k}^{*}, \hat{D}_{k}=D_{k}^{*}, \forall k \geqslant 3$.
Proof. Let us multiply relation (17) by V_{k}, and relation (18) by $U_{k} \quad$. The difference of these two new expressions gives

$$
\begin{align*}
& U_{k} V_{k},-U_{k}, V_{k} \\
& =\left(\hat{B}_{k}-B_{k}^{*}\right) U_{k} \quad 1_{1} V_{k} \quad 1+\hat{C}_{k}\left(U_{k} \quad 2 V_{k} \quad 1-V_{k} \quad{ }_{2} U_{k} \quad 1\right) \\
& +\left(\hat{C}_{k}-\hat{C}_{k}^{*}\right) V_{k}{ }_{2} U_{k} \quad 1+\hat{D}_{k} \bar{P}_{k} \quad{ }_{3} V_{k} \quad 1-D_{k}^{*} \bar{Q}_{k} \quad{ }_{3} U_{k} \quad 1 .(19) \tag{19}
\end{align*}
$$

The result is obtained thanks to relation (16) and a comparison of the degrees.

By using relation (16), the following result is obvious:
Corollary 13. $\forall k \geqslant 3$.
(i) If $\hat{D}_{k} \neq 0$, then $\operatorname{deg} \bar{P}_{k} \quad=1+\operatorname{deg} \bar{Q}_{k \cdots 3}$
(ii) $\hat{D}_{k}\left(\bar{P}_{k} \quad{ }_{3} V_{k} \quad 1-\bar{Q}_{k}{ }_{3} U_{k} \quad 1\right)$

$$
\begin{equation*}
=(-1)^{k} c_{0} \prod_{j-2}^{3} C_{i}\left(C_{k} \quad 2 G_{k}-\hat{C}_{k} G_{k} \quad 1\right) . \tag{20}
\end{equation*}
$$

Two other important theorems can be given about the coefficients and the polynomials $\bar{P}_{k} \quad 3$ and \bar{Q}_{k-3} of relations (17) and (18).

Thforem 14. The three following properties are equivalent for $k \geqslant 3$:
(i) $a_{k \cdot 1}=a_{k} \quad 2=0$ or
$a_{k}, a_{k}, \neq 0$ and the three polynomials E_{k}, F_{k}, and G_{k} have a common zero.
(ii) $\hat{D}_{k}=0$.
(iii) $D_{k}^{*}=0$.

In this case,

$$
\begin{aligned}
& \text { if } a_{k-1}=a_{k}=0 \quad \text { then } \quad \hat{C}_{k}=C_{k} \\
& \text { if } \quad a_{k} 1_{1} a_{k} \quad \neq 0 \quad \text { then } \quad \hat{C}_{k}=\frac{a_{k}-1}{a_{k}-2} C_{k} \quad 1 .
\end{aligned}
$$

Proof. (i) \Rightarrow (ii) and (iii). If $a_{k}, a_{k-2} \neq 0$ and the three polynomials E_{k}, F_{k}, and G_{k} have a common zero, the relation (8) can be written,

$$
U_{k}=\left(x+\widetilde{B}_{k}\right) U_{k-1}+\tilde{C}_{k} U_{k}
$$

after having divided by E_{k}.
It is the same result if $a_{k-1}=a_{k} \quad 2=0$.
It is obvious in the two cases, these two relations give $\hat{D}_{k}=0$.
The same proof also is valid for D_{k}^{*}.
(iii) \Rightarrow (ii). Theorem 12 shows that $\hat{D}_{k}=D_{k}^{*}$.
(ii) \Rightarrow (i). The relation (20) gives

$$
C_{k-2} G_{k}=\hat{C}_{k} G_{k-1}
$$

and thus

$$
G_{k}=\hat{C}_{k} E_{k} .
$$

Therefore

$$
a_{k} \quad 1=a_{k} \quad 2=0 \quad \text { and } \quad \hat{C}_{k}=C_{k}
$$

or $a_{k}, a_{k} \not{ }_{2} \neq 0$ and G_{k} is divisible by E_{k}. The property (3) proves the result. Moreover:

$$
\hat{C}_{k}=\frac{a_{k}}{a_{k}} C_{k}
$$

Theorem 15. If $k \geqslant 3$ and $\hat{D}_{k} \neq 0$, then:
(i) $P_{k}{ }_{3}=\bar{P}_{k}{ }_{3}$,
(ii) $Q_{k}{ }_{3}=\bar{Q}_{k}{ }_{3}$,
(iii) $\hat{D}_{k}=a_{k} \quad{ }_{1} C_{k, 1}-a_{k} \quad \hat{C}_{k}$ and if $a_{k} \quad=0$ then $C_{k}=\hat{C}_{k}$.

Proof. The relation

$$
\begin{equation*}
\left(F_{k}-E_{k}\left(x+\hat{B}_{k}\right)\right) U_{k-1}+\left(G_{k}-E_{k} \hat{C}_{k}\right) U_{k} \quad 2=E_{k} \hat{D}_{k} \bar{P}_{k \cdots 3} \tag{21}
\end{equation*}
$$

is deduced from the difference between the relation (17) multiplied by E_{k} and the relation (8).

The relation (21) is only satisfied if

$$
F_{k}-E_{k}\left(x+\hat{B}_{k}\right)=\text { const. } \quad \text { and } \quad G_{k}-E_{k} \hat{C}_{k} \neq 0
$$

$G_{k}-E_{k} \hat{C}_{k}$ could have a degree equal to 0 or 1 . If this degree was 0 with $\hat{D}_{k} \neq 0$, then the degrees of E_{k} and G_{k} would be equal to 1 . or the degree of E_{k} would be equal to 1 and that of G_{k} equal to 0 and \hat{C}_{k} equal to 0 . Moreover $F_{k}-E_{k}\left(x+\hat{B}_{k}\right)$ would be equal to 0 . In the first case of the degree values F_{k} would be divisible by E_{k} which is impossible. In the second case the relation (21) would show that U_{k-2} would be divisible by E_{k} and the relation (12) that U_{k-1} would also be divisible by E_{k}. In the same way $V_{k} \quad$ and $V_{k} \quad 2$ would be divisible by E_{k}, which is a contradiction of the first part of Corollary 11.

Thus $G_{k}-E_{k} \hat{C}_{k}$ has degree 1 and $F_{k}-E_{k}\left(x+\hat{B}_{k}\right)$ is equal to a non zero constant.
(a) If $a_{k} \quad z \neq 0$ and $a_{k-1}=0$, the relation (7) gives

$$
F_{k}-E_{k}\left(x+\hat{B}_{k}\right)=C_{k} a_{k} \quad 2 .
$$

The coefficient of $x^{k} \quad 1$ is equal to zero in relation (21). Thus

$$
\hat{C}_{k}=C_{k} .
$$

Then, by using relation (12) and after having simplified relation (21) by E_{k} it becomes

$$
U_{k-2}=P_{k} \quad=-\frac{\hat{D}_{k}}{C_{k}} \bar{P}_{k-3}
$$

The relation (13) shows that

$$
\bar{P}_{k} \quad 3=P_{k} \quad 3 \quad \text { and } \quad \hat{D}_{k}=-C_{k} a_{k-2} .
$$

(b) If $a_{k-1} \neq 0$, the coefficient of x is equal to $a_{k-1} C_{k-1}-a_{k-2} \hat{C}_{k}$ in $G_{k}-E_{k} \hat{C}_{k}$ (this expression also contains the case where $a_{k-2}=0$).
(i) if $a_{k}=0$, then, by using relation (7), the expression of $U_{k} \quad$ provided by relation (8) written with $k=k-1$ and divided by E_{k-1}, and relation (12), the relation (21) becomes

$$
\begin{aligned}
& \left(-a_{k-1} C_{k-1} L_{k},+G_{k}-E_{k} \hat{C}_{k}\right) U_{k}=-a_{k-1} C_{k-1}^{2} P_{k-3} \\
& \quad=-C_{k}, \hat{D}_{k} \bar{P}_{k-3} .
\end{aligned}
$$

Therefore

$$
P_{k-3}=\bar{P}_{k} \quad 3 \quad \text { and } \quad D_{k}=a_{k-1} C_{k-1}
$$

(ii) if $a_{k-2} \neq 0$, the same method gives the following transformed relation (21):

$$
\begin{aligned}
& \left(\left(a_{k}{ }_{2} \hat{C}_{k}-a_{k-1} C_{k-1}\right)\left(\frac{G_{k-1}}{C_{k}-2 a_{k} 2}+\frac{C_{k-1}}{a_{k-2}}\right)+G_{k}-E_{k} \hat{C}_{k}\right) U_{k-2} \\
& -\frac{G_{k-1}}{C_{k} 2}\left(a_{k-2} \hat{C}_{k}-a_{k-1} C_{k} \quad 1\right) P_{k-3}=E_{k} \hat{D}_{k} \bar{P}_{k-3} .
\end{aligned}
$$

The factor of $U_{k}{ }_{2}$ is a constant, but if it was non zero, then $U_{k}{ }_{2}$ would be divisible by E_{k}. The proof given for the degree of $G_{k}-E_{k} \hat{C}_{k}^{2}$ shows that it is not possible. Thus

$$
P_{k-3}=\bar{P}_{k-3} \quad \text { and } \quad \hat{D}_{k}=a_{k-1} C_{k-1}-a_{k-2} \hat{C}_{k} .
$$

(c) $Q_{k}{ }_{3}=\bar{Q}_{k-3}$ would be obtained by a similar proof by using the polynomials V_{i}.
A first practical method now can be given to compute the P_{i} 's. The polynomials U_{k} are obtained thanks to the relation (8) with the initializations: $U_{0}=1$ and $U_{1}=F_{1} U_{0}$. All the polynomials P_{k-3}, for which \hat{D} is different from 0 , are deduced from the relation (17). Then, the other polynomials P_{i} are given by the relation (13). Indeed the following theorem, which is a direct consequence of the Theorems 7 and 14, holds:

Theorem 16. If $\hat{D}_{1}, \neq 0, \quad \hat{D}_{i}=0, \quad \forall j \in \mathbb{N}$ such that $l \leqslant j \leqslant m$ and $D_{m+1} \neq 0$, then one of the two following properties holds:
(i) All the a_{i} 's are non zero $\forall j \in \mathbb{N}$ such that $l-2 \leqslant j \leqslant m-1$ and the sequence of the polynomials P_{j} for any $;$ helonging to \mathbb{N} such that $1-3 \leqslant j \leqslant m-3$ can be generated by the relation.

$$
U_{i+1}=P_{i+1}+a_{i, 1} P_{i}
$$

(ii) All the a_{j} 's are zero $\forall j \in \mathbb{N}$ such that $1-2 \leqslant j \leqslant m-1$ and $P_{j}=U_{i}$. Moreover $a_{m} \neq 0$ and $a_{I} \quad \neq 0$.

Finally the relation (12) is well determined.
Now, it can be proved that the polynomials P_{i} satisfy a three-term recurrence relation.

Thforem 17. The following thee-term recurrence relation is satisfied by the polynomials $\left\{P_{i}\right\} ; \in \mathbb{N}$:

$$
\begin{equation*}
P_{k, 1}=\left(x+B_{k+1}\right) P_{k}+C_{k+1} P_{k}, \quad \forall k \in \mathbb{N} \tag{22}
\end{equation*}
$$

with the initializations $P_{1}=0$ and $P_{0}=1$.
This relation is also satisfied by the polynomials $\left\{Q_{i}\right\}_{i \in \mathcal{A}}$, but with the initializations $Q \quad{ }_{1}=\epsilon_{0}$ and $Q_{0}=0$.

Proof. The relation

$$
\begin{equation*}
a_{k} P_{k+1}=\left(E_{k+2}-a_{k} a_{k+1}+C_{k+1}\right) P_{k}+C_{k+1} a_{k} P_{k+1} \tag{23}
\end{equation*}
$$

is obtained by replacing U_{i} in relation (12) by its expression given by relation (13).

If $a_{k} \neq 0$, relation (22) is obtained.
If $a_{k}=0$, the relation

$$
P_{k+1}=\left(x+\hat{B}_{k+1}-a_{k+1}\right) P_{k}+\hat{C}_{k+1} P_{k} \quad 1+\left(\hat{C}_{k+1} a_{k} \quad 1+\hat{D}_{k+1}\right) P_{k}=
$$

is deduced from relation (17) in the same way.
The last coefficient is equal to 0 (see Theorem 14(iii) or 15(iii)), and relation (22) holds.

A similar proof could be used for the polynomials Q_{i}.
A simpler second method can be given to compute the sequences $\left\{U_{i}\right\}_{i \in \mathbb{N}}$ and $\left\{P_{i}\right\}_{i \in \mathbb{N}}$.

If the two sequences $\left\{C_{i}\right\}_{i \geqslant 1}$ and $\left\{G_{i}\right\}_{i \geqslant 1}$ are known, then the two other sequences $\left\{a_{i}\right\}_{i \geqslant 1}$ and $\left\{E_{i}\right\}_{i \geqslant 2}$ can be deduced from them.

If $a_{k} \neq 0, P_{k+1}$ is computed by using relation (23), U_{k+1} is then determined by relation (13).

If $a_{k}=0, U_{k+1}$ is computed from relation (8), and P_{k+1} is then obtained from relation (13).

The main theorem now can be proved:
Theorem 18. If two sequences $\left\{C_{i}\right\}_{i \geqslant 1}$ and $\left\{G_{i}\right\}_{i \geq 1}$ are given satisfying the assumptions (i)-(vii), then there exists a linear functional cof moments with respect to which the polynomials $\left\{P_{i}\right\}_{i \geqslant 1}$ are orthogonal and the polynomials $\left\{U_{k}\right\}_{k \geqslant 2}$ are quasi-orthogonal of order 1 (strictly quasi-orthogonal of order 1 if $a_{k} \neq 0$). This functional is definite and is uniquely determined once the arbitrary non zero moment c_{0} is fixed.

Proof. The sequence $\left\{P_{i}\right\}_{i \in s}$, satisfying a three-term recurrence relation, is orthogonal with respect to a unique linear functional c whose moments c_{i} are determined by the relations $c\left(P_{i}\right)=0, \forall i \in \mathbb{N}$ such that $i \geqslant 1$ with a non zero arbitrary fixed moment c_{0} (it is the Favard theorem: see Chihara [3]). This functional is definite, for $C_{k+1} \neq 0, \forall k \in \mathbb{N}$.

Relation (13) then proves the quasi-orthogonality of order 1 , for at least one of the polynomials G_{k} has a degree equal to 1 and therefore $a_{k} \quad, \neq 0$.

Remark. The associated polynomial of a polynomial u with respect to a linear functional c is defined by

$$
c\left(\frac{u(x)-u(t)}{x-t}\right)
$$

Q_{k} and V_{k} are the polynomials associated to P_{k} and U_{k}, respectively, for P_{k} and Q_{k} satisfy the same three-term recurrence relation. Thus Q_{k} is the second kind orthogonal polynomial which is identical with the associated polynomial of P_{k} with respect to c.

Moreover P_{k} and Q_{k} satisfying the same three-term recurrence relation, the associated polynomial of U_{k} also satisfies the same three-term recurrence relation (8) as U_{k}. But it is also satisfied by the sequence $\left\{V_{k}\right\}_{k \in \mathbb{N}}$. Thus this associated polynomial is identical to V_{k}. V_{k} will be called a quasi-orthogonal polynomial of second kind.

Remark. Let g be the inverse formal power series of the formal power series f, where

$$
f(x)=\sum_{i=0}^{x} c_{i} x^{i} \quad \text { and } \quad g(x)=\sum_{i=0}^{x} d_{i} x^{i}
$$

Therefore

$$
f(x) g(x)=1
$$

A new linear functional $d^{(2)}$ can be defined from the moments $d_{i}, \forall i \in \mathbb{N}$ such that $i \geqslant 2$ by the relations

$$
d^{(2)}\left(x^{i}\right)=d_{1,2} .
$$

The sequence of orthogonal polynomials $\left\{R_{j}^{(2)}\right\}_{j \in \mathbb{N}}$ with respect to the functional $d^{(2)}$ can be introduced. Then (see Brezinski [1])

$$
Q_{k}(x)=c_{0} R_{k}^{(2)},(x)
$$

Thus Q_{k} is orthogonal with respect to $d^{(2)}$, and therefore V_{k} is quasiorthogonal of order 1 with respect to $d^{(2)}$.

References

1. C. Brezinskı, "Padé-Type Approximant and General Orthogonal Polynomials," ISNM Vol. 50, Birkhaüser, Basel, 1980.
2. T. S. Chimara, On quasi orthogonal polynomials, Proc. Amer. Math. Soc. 8 (1957), 765-767.
3. T. S. Chihara, "An Introduction to Orthogonal Polynomials," Gordon and Breach, New York, 1978.
4. D. Dickinson, On Quasi-Orthogonal Polynomials, Proc. Amer. Mah. Soc. 12 (1961). 185-194.
5. A. Dralx. Polynômes orthogonaux formels-applications. in "Lecture Notes in Mathematics." Vol. 974, Springer-Verlag, Heidelberg, 1983.
6. A. Dracx. On quasi-orthogonal polynomials of order $q-1$. submitted for publication.
7. P. Maroni, Une caractérisation des polynômes orthogonaux semi-classiques, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 269-272.
8. M. Riesz, Sur le problème des moments. Troisième note. Ark. Mal. Astronomi Flsik 17 (1923).
