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Chihara {On quast orthogonal polynomials, Proc. Amer. Math. Soc. 8 {1957),
765-767] has shown that quasi-orthogonal polynomials satisfy a three-term
recurrence relation with polynomial coefficients. In this paper it is shown that, if a
sequence of polynomial coefficients is given with some particular properties. then
there exists a unique sequence of monic polynomials ({U,}, .. and Uy=1} which
satisfies a three-term recurrence relation whose polynomial coefficients are those
given. The polynomials are quasi-orthogonal of order 1 with respect to a unique
linear functional of moments. Some new properties of the quasi-orthogonal polyno-
mials of order 1 are also proved. 1990 Academic Press. Tne.

1. QUASI-ORTHOGONAL POLYNOMIALS

The quasi-orthogonal polynomials of order 1 introduced by Riesz [8]
were generalized for any order by Chihara [2]. In particular Chihara
proved that these polynomials satisfy a three-term recurrence relation with
polynomial coefficients.

Some new properties have been given by Dickinson [4] and Brezinski
[ 1] for quasi-orthogonal polynomials of order I.

More recently Maroni [7], using the quasi-orthogonal polynomials of
order ¢ — 1 to obtain a characterisation of the semi-classical polynomials,
gives some properties linking the sets of orthogonal polynomials and those
of quasi-orthogonal polynomials.

Finally new properties of the quasi-orthogonal polynomials of order
g — 1 are given by Draux [6], when the linear functional is semi-definite,
that is when some Hankel determinants can be zero.

Let ¢ be a linear functional acting on the vector space P of polynomials
with complex coefficients. The moments of this functional are given by

clxy=r¢,, Vie N,
1
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The functional ¢ will be said definite if all the Hankel matrices,

Mo=(c,, ) | VheN, k=1
have an inverse.

In all the sequel of this first section, ¢ will be assumed to be definite. In
this case there exists a unique sequence of monic orthogonal polynomials
with respect to ¢ which satisfy a three-term recurrence relation,

Poy =(x+B P +C Py

with C, , , # 0 and the initializations: P =0 and P, = 1. (See for instance
Brezinski [1].)

A second sequence {Q,},.,, of polynomials satisfies the same recurrence
relation with the initializations Q | equal to an arbitrary non zero con-
stant ¢, and Q,=0. In this case, C,=1. These polynomials @, are the
second kind orthogonal polynomials or the associated polynomials of P,
with respect to the linear functional c.

Throughout this paper, ¢ will denote a positive integer.

DerFiNITION 1 [7]. A sequence of polynomials { U, !, ., such that the
degree of U, is equal to » for any » belonging to N,

(1} 1s said quasi-orthogonal of order ¢ — 1 if

YheN such that kz2g—1, ox'U,)=0, VleN such
that 0</<k—¢, and 3JreN, r=g¢g—1 such that
o U #£0.

{i1) is said strictly quasi-orthogonal of order ¢ — 1 if

Vke N such that k=g — 1, ¢(x'U,)=0, ¥/e N such that
0<i<k—¢q, and c(x* “7'U,)#0.

In this paper we arc only interested in the monic quasi-orthogonal poly-
nomials of order 1. Each quasi-orthogonal polynomial can be expressed as
follows (see Chihara [2]):

L’ik:Pk+llkP/< 1s Yk e N. (])

a, 1s an arbitrary complex constant.
Obviously, U, is strictly quasi-orthogonal of order 1 if and only if ¢, 0.
Chihara [27] has shown that the quasi-orthogonal polynomials satisfy a
three-term recurrence relations. To obtain this relation in the case of quasi-
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orthogonal polynomials of order 1, we compute the first unknown ¥, of
the following linear system, VA € N such that k >3,

0 ap - 1 0 0 U, U, -
0 0 dp 1 0 P s Ui
-1 0 0 ay, 1 P, . |= 0
0 C.., x+8B,., -1 0 P, 0
0 0 C, X+ B, -1 P, 0

Then, this relation is

E(x)U (x)=F (x)U, (X)+G(x)U, 5(x), VkeN such that k>3,
(2)

where — F, is equal to the determinant of the linear system, —F, is the
second cofactor and — G, the first cofactor of this determinant.
The three polynomials £,, F;, and G, are

Ei(x)=a, (x+ By +a ) —Cp
Fox)=(a, Ax+B. )= Co )+ Bi+a)+ta, ,Cy, (3)
Gi(x)=C _(lay ((x+ B +a,)—Cy)

The first relations are
U, =F U, with deg F, =1,
E,U,=F,U,+G,U, with FE,=1, Fy=x+ B, + >, (4)
and G,= —(a,(x+ B.+a,)—C,).
The following property is obvious and has been extended to the case of
quasi-orthogonal polynomial of order ¢ — 1 (see Draux [61).
Property 2. Say

Yk eN such that k=24, G, (x)=C, LE;(x). For k=2
and 3, E, =G, _ ;.

Another property will be used in the sequel when a4, a4, ,#0, that is
to say when the degrees of E, and G, are equal to 1.

Property 3. If a, . a, >#0 and if x is a common zero of two of the
polynomials E,, F,, and G,. then x is also a zero of the third one.
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Proof. F, can be written

E.G, a5 .
F, = — G, +
e ; K

w1 Gy A

Cy

E,, (5)

and the property is immediately verified. ||

2. POLYNOMIALS SATISFYING A THREE-TERM RECURRENCE RELATION

In this part, our aim is to find the sequences of polynomials satisfying a
three-term recurrence relation of type (2) and to prove that these polyno-
mials are quasi-orthogonal of order 1 with respect to a unique linear func-
tional of moments when the first moment ¢, 1s fixed.

A sequence {G,};., of non identically zero polynomials and a sequence
{C, 1, of complex numbers are assumed to be known with the following
assumptions:

(1) G, =1,

(11} the degree of G, is equal to 0 or 1,

(ii1) at least one of G,’s polynomials has a degree equal to I,

) C,#0,Vizl: O, =1,

(v) If the degree of G, 1s zero, then G, ., = —C,C, .. Let num-

bers a, (k>=0) be defined by writing the coefficient of x in G, (x) as
a, C,. (In particular, because of (i), a,=0).

(1v

From the sequences {G,},., and {C;},., two other sequences {E,}, ., and
{F;},., of polynomials are deduced thanks to the following assumptions:
(viy E, =G, ,fork=2:C, ,E, =G, |.VkeN such that k =3,
(vil) £, is equal to an arbitrary monic polynomial of degree |
exactly, and Yk =2, il a, |50 then

E ()G, (x 5 C,
Fov = 0@y S g (6)
Cy oay oo ag
and if ¢, | =0 then
Fiix)=E(x) L, (x)+Cra, . (7

where L, (x) is a polynomial of degree | exactly.

Remark. Property 3 hoids.
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With the three sequences {E;},.., {F;},»,, and {G,},», a fourth
sequence {U,}, ., of polynomials will be generated by

E;\,(J’Y}\:Fkbrk, 1+Gkbyk 3, Vk>2 (8)

with the initializations: Uy,=1 and U, =F, U,,.

From the assumptions v, vi, and vii it is ecasy to see that
deg F, =1 + deg E, and the leading coefficients of the two polynomials are
equal. Then:

Property 4. If the sequence {U,} ., exists, U, is monic and deg U, =1,
Vie N.

THEOREM 5. The sequence {U,}, ., exists.

Proof. The subsequence {U,}*_ is assumed to be already computed.

If deg £, =0, U, exists.

If deg £, =1 the relation (8) shows that E, U, ,—F, U, 1 is
divisible by G, ,. that is to say by E,. Thanks to relation (6) this last
quantity is equal to
E._ G, Ce

g,
C Up 2+ = Gy Uy »— E,  Ug s,
k- 20 2 k-2 i 2

a3

Ep U —

for a, ,+#0.
Therefore £, (U, ,—(C, _,/a, >) U, .»)is divisible by G, .

Let usset j=4k—1.

(y (1) HdegE =0, U —(C;ja, YU, | is divisible by G,. Then
goto (I1).
(i) If degE,=1 and if E;, is not divisible by G;, then
U,—(C;/a;_,) U, , is divisible by G;. Then goto (II).
(i) If deg E,=1 and if E; is divisible by G,, then F; also is
divisible by G, (Property 3). k
Then the quantity U,— (C,/a, ) U;_, is equal to

G, C;.
—"/—U/——l*a/ 1<Ujl._ : IU,'Wz)- (9)

¢ g a;

by using the relations (6) and (8), and the assumption (vi).
But thanks to relations (8) it also is obvious that

E, (U, —(C; Ja; ;) U; ,)is divisible by G, |, thus by G,.  (10)

Then replace j by j— 1 and goto (I).
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(IT) Remark that if deg £,=1 and if £, is divisible by G, Ve N
3<j<k—1, the last iteration will be (I}(i) because £,=1.
The result 1s
(

a,

v,

/

U,  is divisible by G,.

But thanks to the relations (9) and (10) it is obvious that

C, ...
U, ——-Luv, ,isdivisible by G, . (1)

i

Now to compute U,, F, U, [+ G, U, , must be divisible by E,, that is
to say by G, .
If a, ,#0 and thanks to relation (6) it is easy to see that

G, ((I," = (Uk -1y, 3) must be divisible by G, . ;.

ko dp 2

which 1s also verified (see (11)).

If ¢, ,=0 and thanks o relation (7) we have the following resuit:
, Ce L N
Cia, - (LrA L= U, 3> must be divisible by G, ,,
Uy >

which is also verified (see (11}).

Moreover the following property is given by the proof of the preceding
theorem:

THEOREM 6. [fdegE,=1. U, ,—(C, ,Ja, ) U, - isdivisible by E,.

A new sequence { P}, ., of polynomials wili be generated by
E .P=alU  -C U, (12)
These new polynomials verify the following:

THEOREM 7. Vie N,

(1) deg P, =1,
(i1) P, is monic,
(i) U, =P +a, P (13)

Proof. The properties (i) and (i1} are obvious thanks to relation {12).
(i) If a,., =0, then U,,, = P,_, (given by relation (12)).
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If a,,#0, the two members of relation (12) (with j=i+ 1} are multi-
plied by E,, ., and the quantity E,_ ,U,,, is replaced by its expression
given by relation (8). Finally a,, , F;, , is replaced by its expression given
by relation (6). Then the following relation is obtained:

EioE 3P =E E U —a Bl Uy = Cryy U
But ,U,.,—C;, ,U,=E,, ,P; and after simplification by E, ,E,, ;. the
relation (13) is obtained.

[t is obvious that relation (8) has two independent solutions. The first
solution sequence is obtained from the initializations: U,=1 and U, = F.
The second solution sequence will be given from the independent initializa-
tions: V', =0 and ', = arbitrary non zero constant c,.

A similar proof as that of Theorem 5 shows that the second sequence
{10, also exists, and the following theorem obviously holds:

THEOREM 8. Vie N such that i=1
(1) degV,=i—1,
(i1) the leading coefficient of V., is equal to ¢,
(iii) IfdegE, .=1,V,,,—(C;, /a,) V, is divisible by E,, ».

Another new sequence {Q,},.. of polynomials can be generated by
E/+2Q/':a/ V/'+17C/+IV/' (14)

A result similar to Theorem 7 can be proved:

THEOREM 9. Vie N, such that i>=1,
(1) degQ;=i—1,
(i1} the leading coefficient of Q, is equal to ¢,
) V,=0,+a,0, ;. (15)

From relation (8) which is satisfied by the polynomials U, and V, it is
easy to obtain:

Ei(lj[ Vif 1 L,"_W t Vl) = 761([}17— 1 Vl 27 Ut*Z I/i l)'
All the relations, Vie N such that 2 <i<k are multiplied by each other
and after simplification the following result is obtained:

THEOREM 10. Vk =2,

k-2
U:Vy I_‘(jk-le:(_l)k('O H GGy (16)
7

]

I/ k <3 the product is taken equal to 1.
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COROLLARY 11. (1) At most one of the pairs (U, U, |} and
(Vi Vi 1) can have a common zero which is a zero of Gy.

(i) The pair (U, V) never has a common Zero, Vk e N.
Proof. (1} s a direct consequence of the relation (16).

(it} If, for instance, U, and V', had a common zero, it would be a
zero of G,. but the relations (12) and (14) with j=Ak—1 show that it
would also be a zero of U, , and ¥, ,, and a contradiction would be
obtained with the first property of this corollary. |

From the sequences {U,! and | V| some monic polynomials P,

iVier P e

and some polynomials O, whose leading coefficient is ¢,. will be given by
the following processes:

Uo=1
U, =(x+B)U,

U,=(x+B) U, +C,U,

Ui=(x+B)U, +C U, ~+D. P, .  Vk=3

with
deg P, <k—3. (17)
Vo=0
Vi=¢,
Vo={x+ BV, +CFV,
Vi,=(Xx+BXV, (+CEV, s+ DF0O, s, Vk=3
with

deg O, <k—-4 (obviously Q,=0). (18)

Relation (17} has already been given by Dickinson [4] by using a
property of the quasi-orthogonal polynomials of order 1.

A first result can be proved about the coefficient of the relations (17) and
(18).

THEOREM 12. B, =B}. C,=C}. D, =D}, vk =3.

Proof. Let us multiply relation (17) by ¥, , and relation (18) by
U, . The difference of these two new expressions gives
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The result is obtained thanks to relation (16) and a comparison of the
degrees. |1

By using relation (16}, the following result is obvious:

COROLLARY 3. Vk >3,
(i) 1f D, #0. then deg P, =1+degQ, ,

(i) D(P, sV, =0, U, )

k3
= (= [ CUC 26~ CiGe (20)

Two other important theorems can be given about the coefficients and
the polynomials P, , and Q, ; of relations (17) and (18).

THEOREM 14, The three following properties ave equivalent for k

>3
(i) a, ,=a,

,=00r

a, a, ~#0 and the three polynomials E,. F,. and G, have a common
zero.
(i) D, =0.
(i) DF=0.
In this case,
if a, =aq, =0 then C.=0C,.
e A e
if a, (a, ,#0 then C, = C. .

a; 5

Proof. (i)=(ii) and (iii). If ¢, ,a,._,#0 and the three polynomials
E.. F,. and G, have a common zero, the relation (8) can be written,

L’v/‘ = (.\) + E/\) l_/rA 1 + 6/‘. L’r/\ 2.

after having divided by E,.

[t is the same result if ¢, | =a, ,=0.

[t is obvious in the two cases, these two relations give D, =0.

The same proof also is valid for D}.

(iif) = (ii). Theorem 12 shows that D, = D}.

(11) = (1). The relation (20) gives

CA' - zGA- = CA‘I\ GA 1
and thus

GA = 6vkEA..
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Therefore
ap =a, =0 and (=0,

or a, ,a;, ->#0 and G, is divisible by E,. The property (3) proves the
result. Moreover:

dy

6k = CA {

Uy

THEOREM 15. If k>3 and D, #0. then:
(i) Py 3:Pk 3s
(i) O AZQk 3

(i) Dy=a, ,Cp | —ay ,C, and if u, =0 then C,=C,.

Proof. The relation

(Fe—Ef(x+B) U, |\ +(G,—E,C Uy s=ED, P (21)

is deduced from the difference between the relation (17) multiplied by £,
and the relation (8).
The relation (21) is only satisfied if

F, — E.(x+ B,)=const. and G,—E.C,#0.

G, — E, C, could have a degree equal to 0 or 1. If this degree was 0 with
D, #0, then the degrees of E, and G, would be equal to 1. or the degree
of E, would be equal to 1 and that of G, equal to 0 and C, equal to 0.
Moreover F, — E,(x+ B,) would be equal to 0. In the first case of the
degree values F), would be divisible by E, which is impossible. In the
second case the relation (21) would show that U, _, would be divisible by
E, and the relation (12) that U, _, would also be divisible by E,. In the
same way V, | and V, , would be divisible by £,, which is a contradic-
tion of the first part of Corollary 11.

Thus G, — E, C, has degree 1 and F, — E, (x + B,) is equal to a non zero
constant.

{a) Ifa, .#0 and a, =0, the relation (7) gives
Fy—Ej(x+B)=Chay 5.
The coefficient of x* ' is equal to zero in relation (21). Thus

Co=C,.
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Then, by using relation (12) and after having simplified relation (21) by E,
it becomes

The relation (13) shows that
Pk 3:Pk 3 a.nd ﬁA:_Cka;‘ b

(b) Ifa, ,#0, the coefficient of x isequaltoa, ,C, | —a, ,C,in
G, — E, C, (this expression also contains the case where a, _,=0).

(i) if a, ,=0, then, by using relation (7), the expression of
U, , provided by relation (8) written with k =k — [ and divided by E, .
and relation (12), the relation (21) becomes

(—a, \Co Ly +G—ECOU, s—a, (Cp (P
=—C IDka 3-

Therefore
P =P, and Di=a,_Cy_,

(ii) if a@,_,+#0, the same method gives the following transfor-
med relation (21):

A G, C, . .
((ak :Ck—akla_.)( eer S ’)+GkEACk>Uk :
Co 2ap 5 ap_;
G._, - B .
AC (ap Ci—a, Cp )P s=E D Py ;.
ko2

The factor of U, , is a constant, but if it was non zero, then U, ,
would be divisible by £,. The proof given for the degree of G, — E,C,
shows that it is not possible. Thus

Pk73:}_)k—3 and ﬁk:ak—lck—l_ak zék-

() Qi 1=0, 5 would be obtained by a similar proof by using the
polynomials V,. |

A first practical method now can be given to compute the P/s. The poly-
nomials U, are obtained thanks to the relation (8) with the initializations:
Uy,=1 and U, = F,U,. All the polynomials P, ,, for which D is different
from 0, are deduced from the relation (17). Then, the other polynomials P,
are given by the relation (13). Indeed the following theorem, which is a
direct consequence of the Theorems 7 and 14, holds:
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THEOREM 16. If D, | #0, 15,:0, VieN such that 1<j<m and
D, ., #0, then one of the two following properties holds:

(1) Al the a;’s are non zero ¥je N such thar [ -2<j<m—1 and the
sequence of the polvaomials P, for anv | belonging to N such that
[ =3<j<m -3 can be generated by the relation,

[ I

U, =P, +a,, P

(i) Al the a,'s are zero Vje N such that [ =2<j<m—1and P,=U.,.
Moreover a,, #0 and a, #0.

Finally the relation (12} is well determined.
Now, it can be proved that the polynomials P, satisfy a three-term
recurrence relation.

THrorEM 17, The following three-term recurrence relation is satisfied by
the polvnomials | P},

P/‘.]:(.\r‘i"B/\.’])})Aﬁ'(VA,]Pl\ 12 V/\'GN (22)

with the initializations P =0 and P,=1.
This relation is also satisfied by the polynomials {Q.},. .. but with the
initializations Q | =c¢, and Qq,=0.

Proof. The relation
a Py =(E v—agay +C )P+ G yai Py (23)

is obtained by replacing U, in relation (12} by its expression given by
relation (13).

If a, #0, relation (22) 1s obtained.

If @, =0, the relation

PA+1:(~\'+BA»u“ak+|)PA+€A»1PA l+(6‘k-+lal\ (4D )Py s

is deduced from relation {17) in the same way.

The last coefficient is equal to 0 (see Theorem 14(iii) or 15(iii)}, and
relation (22) holds.

A similar proof could be used for the polynomials Q,. 1§

A simpler second method can be given to compute the sequences
(Ui bien and (P, .

If the two sequences {C,},., and {G,}, ., are known, then the two other
sequences {a;};-, and {E;}, . can be deduced from them.

If a,#0, P, is computed by using relation (23), U, ,, is then deter-
mined by relation (13).
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If a, =0, U, ., is computed from relation (8), and P, is then obtained
from relation (13).
The main theorem now can be proved:

THEOREM 18. If two sequences {C,}, . and {G,}, . are giten satisfying
the assumptions (1)—(vi1), then there exists a linear functional ¢ of moments
with respect to which the polyvnomials | P}, .., are orthogonal and the poly-
nomials {U, }, ., are quasi-orthogonal of order 1 {(strictly quasi-orthogonal
of order 1 if a, #0). This functional is definite and is uniquely determined
once the arbitrary non zero moment ¢ is fixed.

Proof. The sequence {P,}, .. satisfying a three-term recurrence
relation, is orthogonal with respect to a unique linear functional ¢ whose
moments ¢, are determined by the relations ¢(P,) =0, Vie N such that i > 1
with a non zero arbitrary fixed moment ¢, (it 1s the Favard theorem: see
Chihara [3]). This functional is definite, for C,,, #0, Vke N.

Relation (13) then proves the quasi-orthogonality of order 1, for at least
one of the polynomials G, has a degree equal to 1 and therefore
a; 1 #0. ]

Remark. The associated polynomial of a polynomial u with respect to
a linear functional ¢ is defined by

fulx)—u(r)
[y

@, and ¥, are the polynomials associated to P, and U,, respectively, for
P, and Q, satisfy the same three-term recurrence relation. Thus Q, is the
second kind orthogonal polynomial which is identical with the associated
polynomial of P, with respect to c.

Moreover P, and Q, satisfying the same three-term recurrence relation,
the associated polynomial of U, also satisfies the same three-term
recurrence relation (8) as U,. But it is also satisfied by the sequence
{ Vi) gen- Thus this associated polynomial is identical to V,. V, will be
called a quasi-orthogonal polynomial of second kind.

Remark. Let g be the inverse formal power series of the formal power
series f. where

Therefore

Sx)glxy=1
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A new linear functional ¢! can be defined from the moments d,, Vie N
uch that i>2 by the relations

dP(xY=d,, .

The sequence of orthogonal polynomials {R{*'}, ., with respect to the

functional d‘? can be introduced. Then (see Brezinski [1])

Qk (x)= (‘()R';\z' 1(-\')-

Thus Q, is orthogonal with respect to ¢'*', and therefore ¥, is quasi-

orthogonal of order 1 with respect to '

1
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